অপেক্ষা ছোট কোণকে প্রবদ্ধ কোণ বলে। অর্থাৎ 360 > x 180 হলে x একটি প্রবৃদ্ধ
কোণ।
দুই সমকোণের সমান বা 180
❑ বিপ্রতীপকোণ (Vertically Opposite angle ) : দু’টি সরল রেখা পরস্পর ছেদ করলে যে চারটি কোণ উৎপন্ন হয় এদের যেকোণ একটিকেতার বিপরীত কোণের
বিপ্রতীপ কোণ বলে।
❑ সম্পূরককোণ(Supplementary angle ) : দু’টি কোণের সমষ্টি 180 বা দুইসমকোণ হলে একটিকে অপরটির সম্পূরক কোণ বলে।
❑ একাস্তরকোণ: দু’টি সমান্তরাল রেখাকে অপর একটি রেখা তির্যকভাবে ছেদ করলে ছেদক রেখার বিপরীত পাশে সমান্তরাল রেখা যে কোণ উৎপন্ন করে তাকে একান্তর কোণ বলে। একান্তর কোণগুলো পরস্পর সমান হয়।
❑ সন্নিহিতকোণ: যদি দু’টি কোণের একটি সাধারণ বাহু থাকে তবে একটি কোণের অপর কোণের সন্নিহিত কোণ বলে।
❑ সুক্ষ্মকোণীত্রিভূজ (Acute angle triangle ) : যে ত্রিভূজের তিনটি কোণই এক সমকোণ(90 0 ) এর ছোট তাকে সূক্ষ্মকোণী ত্রিভূজ বলে।
ত্রিভূজের একের অধিক সথূলকোণ থাকতে পারে না।
❑ সমকোণী ত্রিভূজ (Right angled triangle) : যে ত্রিভূজের একটি কোণ সমকোণ
তাকে সমকোণী ত্রিভূজ বলে। কোন ত্রিভূজে একটির অধিক সমকোণ থাকতে পারে না। সমকোণী ত্রিভূজের সমকোণের বিপরীত বাহুকে অতিভূজ এবং সমকোণ সংলগ্ন বাহুদ্বয়ের একটিকে ভূমি এবং অপরটিকে লম্ব বলা হয়।
ত্রিভুজের তিনটি শীর্ষ থেকে বিপরীত বাহুগুলির উপর তিনটি লম্ব সমবিন্দুগামী, এবং বিন্দুটির নাম লম্বকেন্দ্র(orthocenter)
❑ পরিবৃত্ত: তিনটি শীর্ষবিন্দু যোগ করে যেমন একটিমাত্র ত্রিভুজ হয় তেমনি তিনটি বিন্দু (শীর্ষ)গামী বৃত্তও একটিই, এর নাম পরিবৃত্ত।
❑ চতুর্ভুজ: চারটি রেখাংশ দিয়ে সীমাবদ্ধ সরলরৈখিক ক্ষেত্রের সীমারেখাকে চতুর্ভুজ বলে।
বিকল্প সংজ্ঞা: চারটি রেখাংশ দিয়ে আবদ্ধ চিত্রকে চতুর্ভুজ বলে।
❑ কর্ণঃ চতুর্ভুজের বিপরীত শীর্ষ বিন্দুগুলোর দিয়ে তৈরি রেখাংশকে কর্ণ বলে। চতুর্ভুজের কর্ণদ্বয়ের সমষ্টি তার পরিসীমার চেয়ে কম।
❑ চতুর্ভুজের বৈশিষ্ট্যঃ চারটি বাহু, চারটি কোন, অন্তর্বর্তী চারটি কোনের সমষ্টি ৩৬০°।
❑ আয়ত: যে চতুর্ভুজের বিপরীত বাহুগুলো সমান ও সমান্তরাল এবং প্রতিটি কোণ সমকোণ, তাকে আয়ত বলে।
❑ বর্গক্ষেত্র: বর্গক্ষেত্র বলতে ৪টি সমান বাহু বা ভূজ বিশিষ্ট বহুভূজ, তথা চতুর্ভূজকে বোঝায়, যার প্রত্যেকটি অন্তঃস্থ কোণ এক সমকোণ বা নব্বই ডিগ্রীর সমান।
❑ রম্বসঃ রম্বস এক ধরনের সামান্তরিক যার সবগুলি বাহু সমান কিন্তু কোণ গুলো সমকোন নয়।
❑ বহুভুজ
(কারনঃ সরলরেখা দ্বারা সীমাবদ্ধ) বহুভুজ নয়
(কারনঃ বক্র রেখা দ্বারা সীমাবদ্ধ) বহুভুজ নয়
(কারনঃ সীমাবদ্ধ নয়)
যদি বহুভুজের সবগুলি বাহু ও কোণ সমান হয়, তবে সেটিকে সুষম বহুভুজ বলে।
বিপ্রতীপ কোণঃ কোন কোণের বাহুদ্বয়ের বিপরীত রশ্মি যে কোণ তৈরি করে, তা ঐ কোণের বিপ্রতীপ কোণ বলে ।
❑ গোলকঃ দুইটি পরস্পর বিপরীত রশ্মি তাদের সাধারণ প্রান্ত বিন্দুতে যে কোণ উৎপন্ন করে, তাকে সরল কোণ বলে ।
❑ প্রবৃদ্ধকোণঃ দুই সমকোণ থেকে বড় কিন্তু চার সমকোণ থেকে ছোট কোণকে প্রবৃদ্ধকোণ বলে ।
❑ ছেদকঃ যে সরলরেখা দুই বা ততোধিক সরলরেখাকে ছেদ করে, তাকে ছেদক বলে ।
❑ অন্তঃকেন্দ্রঃ ত্রিভুজের কোণত্রয়ের সমদ্বিখন্ডকগুলো সমবিন্দু ।ত্রই বিন্দু ত্রিভুজের অন্তঃকেন্দ্র।
❑ পরিকেন্দ্রঃ ত্রিভুজের বাহুত্রয়ের লম্বদ্বিখন্ডকত্রয় সমবিন্দু। ত্রই বিন্দু ত্রিভুজের পরিকেন্দ্র।
❑ ভরকেন্দ্রঃ ত্রিভুজের কোণ একটি শীর্ষবিন্দু এবং তার বিপরীত বাহুর মধ্যবিন্দুর সংযোজক সরলরেখাকে মধ্যমা বলে। ত্রিভুজের মধ্যমাত্রয় সমবিন্দু । ত্রই বিন্দু ত্রিভুজের ভরকেন্দ্র।
❑ লম্ববিন্দুঃ ত্রিভুজের শীর্ষত্রয় হতে বিপরীত বাহুর উপর অঙ্কিত লম্বত্রয় সমবিন্দু। ত্রই বিন্দু ত্রিভুজের লম্ববিন্দু।
❑ সর্বসমঃ দুইটি ক্ষেত্র সর্বসম হবে যদি একটি ক্ষেত্র অন্যটির সাথে সর্বতোভাবে মিলে যায় । সর্বসম বলতে আকার ও আকৃতি সমান বুঝায় ।
❑ স্পর্শকঃ একটি বৃত্ত ও একটি সরলরেখার যদি একটি ও কেবল ছেদবিন্দু থাকে তবে রেখাটিকে বৃত্তটির একটি স্পর্শক বলা হয় ।
❑ সাধারণ স্পর্শকঃ একটি সরলরেখার যদি দুইটি বৃত্তের স্পর্শক হয়, তবে বৃত্ত দুইটির একটি সাধারণ স্পর্শক বলা হয় ।
❑ আয়তিক ঘনবস্তুঃ তিন জোড়া সমান্তরাল আয়তাকার সমতল বা পৃষ্ট দ্বারা আবদ্ধ ঘনবস্তুকে আয়তিক ঘনবস্তু বলে ।
❑ ঘনকঃ আয়তাকার ঘনবস্তুর দৈর্ঘ্য, প্রস্থ ও উচ্চতা সমান হলে, তাকে ঘনক বলে ।
❑ সিলিন্ডার বা বেলুনঃএকটি আয়তক্ষেত্রের যে কোন একটি বাহুকে স্থির রেখে ঐ বাহুর চতুর্দিকে আয়তক্ষেত্রটিকে ঘুরালে যে ঘনবস্তু উৎপন্ন হয় তাকে সমবৃত্তভুমিক বেলুন বলে ।
❑ ত্রিভুজের বাহু = ৩টি,
❑ চতুর্ভুজের বাহু = ৪টি
❑ বৃত্তের বাহু = নাই,
❑ ঘনকের বাহু = ৮টি
❑ ঘনবস্তুর বাহু = ১২টি।